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An experimental study is carried out to elucidate the structure of a high Reynolds
number (∼105) turbulent pulsed jet. Particle image velocimetry measurements showed
that the near flow field is dominated by a series of vortex rings with jet-like flows
in between. The data show that the vortex rings convect at nearly constant speed
of 0.6Uj (Uj : mean jet exit velocity) and the spacing between the rings assumes a
value of about 0.6/St (St: Strouhal number= fd/Uj , where f is the pulsing frequency
and d is the nozzle exit diameter). With increasing Strouhal number, the rings are
closely spaced and the flow tends to assume a steady jet character at five diameters
downstream of the nozzle exit. At lower Strouhal numbers there is a distinct region
of jet flow in between the rings. Many of the global characteristics, entrainment, mass
and momentum flux are essentially determined by the strength and spacing of the
rings which, in turn, depend on St . We show that the increase in momentum is due
to both increased momentum flux and overpressure at the exit in accordance with
Krueger & Gharib (AIAA J., vol. 43 (4), 2005, p. 792). This increase in momentum
comes at the expense of higher energy required to produce the jet. We also present
results of organized and random components of the fluctuations and production
of the random turbulence in a pulsed jet. The two regions of dominant turbulence
production are identified with the ring and the trailing jet shear layers.

1. Introduction
The first successful application of a pulsed jet engine was during the World War II

for propelling a flying bomb (Manganiello, Valerino & Essig 1945). The advantage
of such an engine is its extremely light weight obtained by simple construction. These
engines are especially useful in relatively short duration operation at high speeds. As
such pulsed jet engines have been of interest with applications varying from radio-
controlled small aircraft to vertical take off and landing (VTOL) aircraft. Our interest
here is the use of pulsed jet in a thrust augmenting ejector configuration to yield high
levels of thrust augmentation to achieve short-duration vertical flight. In support of
a number of previous investigations, a recent study (Choutapalli & Krothapalli 2009,
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Figure 1. Flow visualization of a pulsed jet obtained from experimental apparatus
described in § 2; St = 0.11; Uj = 100.5 m s−1.

and references therein) suggests a possibility of achieving thrust augmentation ratio
(total thrust/primary jet thrust) of about 2.3 if the primary jet is pulsed at a Strouhal
number (fd/Uj; where f is the primary jet pulsing frequency, d is the primary nozzle
exit diameter and Uj is the mean primary jet exit velocity) of about 0.25 using a
compact ejector. Furthermore, it is found that the ejector performance is determined
largely by the spatio-temporal evolution of the primary pulsed jet. With this in
mind, an experimental investigation was carried out to provide an understanding
of free pulsed jet structure and its dependence on the major parameters, such as
the pulsing frequency, pulse characteristics and mean jet exit Mach number. For
all the experiments considered here, the Reynolds number, based on the mean exit
velocity and nozzle diameter, is sufficiently large enough to yield turbulent boundary
layer at the nozzle exit. Although experiments were conducted at exit Mach numbers
ranging from 0.1 to 0.8, and since compressibility was found to play only a secondary
role in the jet evolution (Choutapalli 2006), for brevity, only the incompressible jet
results will be presented here. Most of the previous investigations on pulsed jets
simplified the flow to an isolated vortex ring created either by a piston driver at
low velocities (Dabiri & Gharib 2004) or by a shock tube at impulsive supersonic
conditions (Arakeri et al. 2004). The study of a continuously generated pulsed jet
flow field at high Reynolds numbers received relatively little attention. Pulsed jets
can be found in a variety of applications such as blood flow in a heart (Gharib
et al. 2006), jets in cross-flows (M’Closkey et al. 2002 and Johari 2006), active flow
control (Smith & Glezer 1998) and pulse detonation engines (PDEs). Additionally,
several aquatic animal propulsive flows display characteristics that resemble a pulsed
jet (Dabiri 2005). Crow & Champagne (1971) forced a moderate Reynolds number
(Red ∼ 104) axisymmetric jet, using a loudspeaker, to produce a jet with large-scale
vortical structures that are commonly referred to as ‘puffs’ or ‘vortex rings’. These
structures are typically a manifestation of the Kelvin–Helmholtz instability in the
shear layer and the forcing is primarily used to enhance the unstable mode of the
jet. The exit velocity of the jet however remains relatively constant and the forcing is
simply a perturbation. We refer to a pulsed jet as one in which variation with time
of the exit velocity is large and of the same order of magnitude as the mean exit
velocity. Even though the pulsed jet shows vortex rings similar to those of perturbed
jets, they are much stronger (figure 1) resulting in a different jet, a description of
which is the subject of this paper. The strongly pulsed jet is considered as that where
the root mean square (r.m.s.) velocity is substantially greater than the time-average
velocity at the nozzle and the slug of jet fluid associated with each pulse is relatively
short generating a series of compact vortex rings.
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One of the consequences of forcing is an increase in entrainment of the ambient
fluid. For example, at a downstream location of four diameters, Crow & Champagne
(1971) found an increase in the entrained volume flow of 32 % at a Strouhal number
of 0.3. A much stronger forcing of the jet results in higher values of entrainment as
demonstrated by Vermeulen, Ramesh & Wai (1986) and was found to be maximum
at St = 0.25 with a higher entrained volume flow of about 150 %.

Bremhorst & Hollis (1990) and Bremhorst & Gehrke (2000) carried out studies on
fully pulsed jets. In a fully pulsed jet, the jet velocity returns to zero between pulses for
a finite amount of time. Bremhorst & Hollis (1990) examined a pulsed jet operating
at St =0.007. An increase of about 100 % in the mass entrainment as compared to a
steady jet was observed. The experimental results show that vortex-dominated regions
indicate large values of turbulence intensities. This flow may be treated as a series of
vortex rings well separated in time similar to that of Krueger & Gharib (2005), who
studied systematically the effects of pulsing duty cycle and the ratio of the ejected slug
length (length of the fluid ejected out during a cycle) to diameter. Significant thrust
augmentation by pulsing was observed as compared to steady jet with identical mass
flux. The increased thrust is attributed to the overpressure at the nozzle exit plane
during vortex ring formation and the increased momentum due to the unsteadiness.
Low Strouhal number pulsed jets may be considered to be a series of non-interacting
vortex rings. However, at high Strouhal numbers, the jet approaches to that of a
‘steady jet’.

Siekmann (1963) has derived expressions for thrust produced by unsteady planar
jets using control volume analysis in the context of aquatic propulsion by pulsed jets.
The results of his analysis compares favourably with previously reported experimental
data. In his study, Weihs (1977) used a periodic train of vortex rings to analyse the
thrust produced by aquatic animals that use pulsed jet propulsion. It was shown that
when the pulsing frequency is sufficiently high, the mutual interaction of the vortex
rings could have substantial hydrodynamic and propulsive benefits.

Although substantial literature exists on turbulent jets, few experiments have been
carried out on a pulsed jet with the degree of thoroughness found in either of the
steady and perturbed jets. Majority of the studies on pulsed jets are conducted at
relatively low Reynolds numbers and in most cases without clear description of
the jet exit conditions. The important issues related to the pulsed jet development:
the entrainment, thrust augmentation and turbulence are examined in our study
using phase-locked particle image velocimetry (PIV). Additionally, the pulsed jet flow
evolution is characterized in terms of its main components: vortex ring, the trailing
and background jets. When appropriate a direct comparison of the pulsed jet and the
corresponding steady jet is made.

In the present experiment, a pulsed jet results when the flow rate exiting a nozzle
into still ambient varies cyclically in time. The main parameters that define the jet
are the mean exit velocity (Uj = 8

d2t

∫ d/2

0

∫ t

0
u(r, t) r dr dt, where u is the instantaneous

axial velocity, t is the time during a cycle and d is the nozzle exit diameter and
the centre of the nozzle is defined as the origin), phase-averaged maximum velocity
within a cycle(〈uc〉max : c.f. figure 4), phase-averaged minimum velocity within a cycle
(〈uc〉min: c.f. figure 4) and the r.m.s. value of the periodic axial velocity component
(ũc,rms) at the centre of nozzle exit and the time period of pulsing (τ =1/f, where f

is the pulse frequency). The profiles in time and profiles across the exit cross-section
(e.g. top hat) of the phase-averaged velocity and phase-averaged turbulent velocities
are additional parameters. The temporally and spatially averaged axial velocity at the
nozzle exit plane is used as the mean jet velocity. A convenient set of non-dimensional
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parameters are Reynolds number based on the mean exit velocity and the nozzle
exit diameter (Red =Ujd/ν), Strouhal number (fd/Uj or a non-dimensional time
T ∗ =Ujτ/d = 1/St = L/d), 〈uc〉max /Uj and 〈uc〉min /Uj and ũc,rms/Uj . We show below
that T ∗ gives an immediate picture of the axial spacing of the structures and is
preferable to the more commonly used Strouhal number.

A pulsed jet in the near field is perhaps best described as a series of vortex
rings interspersed by jet-like flows. However, depending on the way the pulsed jet is
produced, the jet flows between the rings may be absent. Such a jet occurs in the case
of low frequency pulsing with long time interval of zero exit flow between the pulses
(Bremhorst & Gehrke 2000). Many important global characteristics of a pulsed jet,
such as entrainment and spreading rate, are determined by two main parameters: the
spacing and strength of these vortex rings. The spacing Δxring is given by the product
of the convection speed of the rings and the time period of pulsation Uringτ . As shown
later, in the near field, Uring ≈ 0.6Uj ; thus, Δxring/d = 0.6Ujτ/d =0.6T ∗ = 0.6/St . The
relation Uring = 0.6Uj is valid only in the near field and only for some types of pulsed
jets. But the relation Δxring =Uringτ is valid at all downstream locations and for all
types of pulsed jets. For example, when there is a large period of zero exit flow
between pulses (low duty cycle), the ring convection velocity will be closer to some
factor (<1) of the average exit velocity during the period when the flow is on. With
downstream distance, the Uring value is expected to decay as some function of x.

A brief explanation of the measurement set-up, data processing procedure and the
parameter range is given in § 2. Recognizing that the initial conditions are important in
determining the downstream evolution of the pulsed jet, in § 2.1, a description of these
is delineated. In § 3.1, the evolution of the jet is described using the phase-averaged
velocity and vorticity fields. The global mean and turbulence characteristics of the
pulsed jet are compared with a steady jet in § 3.3. A summary of the observations
is used to provide a basic understanding of the pulsed jet in § 4. In this paper, for
brevity, we only use and report the data that are required to elucidate the salient
features of a pulsed jet. For more detailed information, reference can be made to
Choutapalli (2006).

2. Experimental apparatus and procedures
The experiments were conducted in the Pulsed Jet Facility (figure 2) of the Fluid

Mechanics Research Laboratory located at the Florida State University. The air supply
for the facility is provided from high-pressure (15 MPa) storage tanks connected to
a high displacement air compressor. The tanks have a total capacity of 10 m3 and
could drive a jet with mass flow rate of 0.25 kg s−1 continuously up to 40 min. The
stagnation pressure and temperature in the settling chamber were maintained steady
by two pneumatic valves and an inline electrical heater (192 kW) with automatic
controllers. The pressure and temperature were kept at their nominal set value within
a variation of ±2 kPa and ±0.5 K, respectively. The proper heating of the flow
allowed matching the dimensionless parameters of Mach number, Reynolds number
and Strouhal number of the simulated jet.

The settling chamber (length = 610 mm, internal diameter= 482.6 mm) assembly
contained a rotating disk that is connected to a motor in a manner shown in
figure 2. The rotational speed of the disk is controlled by a DC motor (Baldor
SmartMotor, model CSM3615T-2). In order to minimize the air leak between the
rotating disk and the end cap of the stagnation chamber, a teflon seal with the same
geometric configuration as the disk is attached to the rotating disk. The rotating
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Figure 2. Schematic of the facility.
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Figure 3. (a) The effective chopper opening area change in a period; Shaded circles: rotating
disk opening; open circles: nozzle inlet opening (b) flow chopper geometry used to define the
duty cycle.

disk (D = 475 mm) has six equally spaced circular holes with a nominal diameter
Dp = 76 mm. The distance between the centres of the disk and the hole is 190.5 mm.
The frequency of the pulses could be varied precisely up to 250 ± 1 Hz by changing
the rotational speed of the motor. The end cap of the settling chamber has a circular
opening of 76 mm in diameter. A 100 mm long flexible stainless steel joint (bellow,
spring constant = 30 kNm−1) connects the opening of the end cap to a straight smooth
pipe of length Lp = 228 mm. The other end of the pipe is connected to the nozzle
inlet. The calculated opening area at the entrance of the nozzle inlet as a function of
period is given in figure 3(a). The shaded circles represent the rotating disk opening
and the open circles represent the nozzle inlet opening. This configuration gives a
duty cycle of 50 %. In the present configuration, the duty cycle is defined as the ratio
of the angle subtended at the centre of the chopper by each hole to the total angle
between two similar points of consecutive holes (α = θ1/(θ1 + θ2)). The flow chopper
has six holes spaced equally 60◦ apart and each hole subtends an angle of about 30◦

at the centre of the chopper giving rise to a duty cycle of 50 % (figure 3b).
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Figure 4. Total pressure and phase-averaged axial velocity variation with time at centre of
nozzle exit, St = 0.11.

A 128 mm long nozzle has a smooth cubic spline contraction section with an area
ratio of 2.24 (Din = 76 mm; Dout = 50.8 mm) followed by a 25.4 mm straight section
and the nozzle exit diameter d is 50.8 mm.

The stagnation pressure and temperature inside the settling chamber are measured
using Omega pressure transducer (model PX215-100 AI) and an Omega K-type
thermocouple, respectively. Since the stagnation pressure varies with frequency of
operation, a second Omega pressure transducer is installed in the straight pipe
preceding the nozzle. The static pressure in the straight pipe is calibrated against the
nozzle exit centreline Pitot pressure measured using a RUSKA pressure transducer.
The stagnation pressure is measured at the centre of the nozzle exit plane using a
Pitot probe connected to a RUSKA pressure transducer. Simultaneous static pressure
measurements from the static port located upstream of the nozzle are also recorded.
Hence, for each stagnation pressure reading at the nozzle exit, there is a corresponding
static pressure reading from the static pressure port ahead of the nozzle. From the
calibration measurements, it is found that, for a given Mach number of the jet,
the static pressure inside the straight pipe is not affected by varying frequency of
operation. Hence, the static pressure in the pipe upstream of the nozzle exit is used
to monitor the jet exit conditions accurately.

Typical unsteady total pressure time signal measured using a Kulite transducer
(model no. XCE 062-100A) incorporated into a total pressure probe at the centre of
the nozzle exit is shown in figure 4. The total pressure probe has a diameter of 2 mm.
Since the diameter of the nozzle is 50.8 mm, the ratio of these diameters is about 1:25.
Hence, the blockage effect due to the Pitot tube is small. The variation of the nozzle
exit flow is depicted by the pressure-time signal in the figure. Also included in the
figure is the phase-averaged axial velocity obtained using PIV (§ 2.1 and § 2.2). There
appears to be a phase lag of about 7.8◦ (or 0.7 rad) between the pressure and velocity
signals. The corresponding normalized p′

rms variation with the pulsing frequency is
shown in figure 5. Here, P0 is the total pressure at the centre of the nozzle exit plane
and Pa is the ambient pressure. The variation of the normalized value of p′

rms is due
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rms variation with pulsing frequency at the centre of nozzle exit.

to experimental uncertainty which was measured to be about 5 %. The normalized
magnitude of p′

rms assumes values within a range of 0.58 ± 0.04.

2.1. Particle image velocimetry

For PIV measurements, a dual cavity digitally sequenced Nd:YAG laser (Spectra
Physics PIV400) was used. A light sheet of approximately 1 mm thickness was created
by suitable combination of spherical and cylindrical lenses. The images were recorded
simultaneously by two identical cross-correlation CCD cameras (sharpVISION 1400-
DE) fitted with 55 mm (f /2.8) Nikon lenses. The resolution of the camera was
1.3 k × 1 k, which was operated in double exposure mode. In this mode of operation,
with proper synchronization with 15 Hz laser trigger, the camera can acquire at a
rate of 5 image pairs per second. In the present experiments, the jet was seeded with
sub-micron (∼0.3 μm) oil droplets generated by a modified Wright nebulizer, which
supplied the particles to the main jet. Fog fluid (a solution of glycol and water) is used
to generate the ambient seeding. The seed particles are supplied into the stagnation
chamber, which then mix with the incoming air supply. The resulting jet from the
nozzle is found to be uniformly distributed with the seed particles. The ambient
air seeding is generated by a ROSCO 1600 fog generator. Alkislar (2001) estimated
that more than 95 % of the particles generated by the present seeder would have a
diameter of less than 0.5 μm, and the nominal particle diameter size would be no
greater than 0.3 μm. In steady flows, using the nominal particle diameter of 0.3 μm, it
was found that they track the flow quite accurately up to about 440 m s−1 (Alkislar,
Krothaplli & Lourenco 2003).

The measurements were confined to the central plane covering 11d in the axial
direction. A novel processing algorithm developed by Lourenco & Krothapalli (2000)
was used to obtain accurate velocity data from the particle images with high spatial
resolution. In this algorithm, the image is subdivided into interrogation regions and
the average displacement of the ‘ensemble’ of particles in the interrogation area
is measured using statistical correlation techniques. Thereafter, the interrogation
area is further subdivided in order to identify individual particles using a particle
detection scheme. In this scheme, a ‘mask’ is applied to eliminate the effect of particle
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image truncation at the edges of the interrogation region and to eliminate spurious
background due to reflections and parasite illumination. The particle detection scheme
also generates a list of the centre of mass, position and form factor of each particle
image. Once the particles are identified, a particle pairing procedure is applied based
on the group displacement. The displacement is measured based on the maximum
correlation between images of corresponding particles. Sub-pixel resolution is obtained
by means of Gaussian interpolation. The measured displacement is assigned at the
midpoint of the centre of masses of the corresponding particle images to generate
the displacement position, which corresponds to a second-order evaluation of each
displacement. The error in each displacement measurement is minimized by using a
least-squares fitting algorithm. Second-order accuracy is maintained by assuming that
the displacement field is well represented locally by a second-order polynomial

u = ax2 + bx + cy2 + dy + exy + f.

Since there are six unknowns in the equation, it requires at least six independent
displacement position vectors. The algorithm ensures that there are at least ten
values in the displacement positions list by dynamically adapting the sizes of the
interrogation regions during the computation. The salient feature of this approach is
that the flow field at any point is described with second-order accuracy including the
derivates that are found by differentiating the above-mentioned equation. The main
purpose of the least-squares method is to account for the velocity and seeding density
gradients in addition to minimizing the local measurement error in comparison to
that associated with individual particle image pairs. Even though an unstructured
grid is used for obtaining the velocity vectors, the velocity field in the present study
is presented at regular interval for ease of presentation.

The time evolution of the jet was captured by means of phase-locked measurements.
A schematic of the instrumentation for the phase-locked PIV measurements is shown
in figure 6. An incremental optical encoder attached to the rotating shaft was used
to generate the necessary trigger signal for the image acquisition and processing
programme (IDT ProVISION). The encoder had 720 increments in order to precisely
mark the phase of the pulses. The pulse trigger train was synchronized with the fully
closed pipe inlet just about to open (corresponds to the time at position ‘0’ shown
in figure 3a). This signal was divided such that it corresponded to the frequency
of the laser and the camera. Finally, a delay on the divided signal was applied to
generate the necessary phase trigger for the synchronized camera and laser strobe.
All time delays were realized with an accuracy of about 1 ns. The laser frequency
of 15 Hz requires the pulsation frequency to be a multiple of 15. The full cycle of a
pulse was sampled in 60 phases with equal intervals. At every phase, 100 realizations
were obtained. Phase-averaged velocity fields were computed by taking the mean of
these instantaneous fields. The measurement uncertainty is estimated to be about
1% and 10 % in phased-averaged velocity and random turbulence measurements,
respectively, with a 95 % confidence level. The global mean quantities were calculated
from phase-averaged values. A triple decomposition of the velocity data was carried
out using a method similar to that of Alkislar et al. (2003).

Since the flow considered here is dominated by periodic oscillations, it is essential
to ensure that the particles respond faithfully to flow oscillations. In our experiments
here, due to highly unsteady nature of the flow, the particles experience higher
accelerations. Mie (1996) has examined the effects of unsteady dynamic forces on
spherical solid particles to estimate the cut-off frequency or cut-off particle size. For
the conditions considered in our experiments, the maximum acceleration experienced
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Figure 6. Schematic of PIV set-up.

by the particles is estimated to be about 211 × 103 m s−2. For the maximum velocity
observed in our experiments (∼160 m s−1), the error in the velocity magnitude due to
particle slip is estimated to be about 0.04 %. The analysis further shows that within
the pulsing frequency range of 30–250 Hz, the particle size is sufficiently small enough
that it responds closely to fluid velocity (Choutapalli 2006).

2.2. Phase-locking technique

The spatio-temporal evolution of the jet was obtained using the phase-averaging
technique. Since an important portion of the flow field is periodic in time, the
fluctuation away from a global mean q̄ consists of a contribution from the periodic
large-scale motion q̃ and a contribution q ′′ from the random fluctuations. When an
ensemble of data is considered at a fixed phase, the mean of this ensemble describes
the periodic motion q̃ , with the vortices stationary at an average location. Fluctuations
from the mean value at a fixed phase come from two main sources. In the following
discussion, every fluctuation from the mean at constant phase will be considered
as random q ′′. The fluctuations due to the variations in shape and location of the
vortices in every sample (due to phase jitter) also contribute to this quantity; however,
it is difficult to quantify the amount of the contribution.

Following the work of Reynolds & Hussain (1972), Bremhorst & Harch (1979)
and Cantwell & Coles (1983), any flow variable, q(x, t), can be decomposed into two
components as shown in (2.1):

q(x, t) = 〈q(x, τ )〉 + q ′′(x, t), (2.1)

where < > is the average at a constant phase (which is also commonly used as the
phase average), q ′′ is the random component and τ is the phase delay within the
period of one pulse cycle. Then, the average at a constant phase is given by the
following expression:

〈q(x, τ )〉 = q̄(x) + q̃(x, τ ), (2.2)

where q̄(x) is the global mean and q̃(x, τ ) is the periodic mean component.
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In the present experiments, the average at a constant phase was obtained using the
following equation:

〈q(x, τ )〉m =
1

Nm

Nm∑
i=1

q(x, ti + τm), (2.3)

where Nm is the number of samples acquired at phase τm from the reference time
ti . The reference time is obtained from the optical encoder attached to the rotating
shaft as shown in figure 2. One hundred samples at each phase were shown sufficient
to achieve statistical convergence of the velocity field. A maximum mean value error
of 5 % of the maximum velocity with 90 % confidence level was considered as a
converged velocity field at a constant phase. The global mean is obtained using the
following expression:

q(x) =
1

M

M∑
m=1

〈q(x, τ )〉m . (2.4)

The global mean values were found from the mean of the phase-averaged quantities
as shown in (2.4) where M is the number of phases. In this study, M = 30 and 60
were used; therefore, the pulse cycle was sampled at 12◦ or 6◦ intervals based on the
flow conditions. The phase-averaged velocity field was obtained using 100 samples,
while the global mean velocity field was obtained using 3000–6000 samples. Once the
global mean is calculated, the fluctuating component can be obtained from (2.2). The
second-order correlations are calculated using the following equations:

〈q ′′r ′′〉m = 〈qr〉m − 〈q〉m 〈r〉m, (2.5)

q̃ r̃ = 〈q〉 〈r〉 − q r, (2.6)

qr = q r + q̃ r̃ + q ′′r ′′, (2.7)

and the total Reynolds stresses (conventional stresses obtained by classical Reynolds
averaging) are simply the addition of the global fluctuating and global random
components as

q ′r ′ = q̃ r̃ + 〈q ′′r ′′〉 =
1

M

M∑
m=1

(q̃ r̃ + 〈q ′′r ′′〉)m. (2.8)

To minimize the contribution due to phase jitter, in every phase, each of the 100
instantaneous velocity fields is correlated with the phase-averaged velocity field to
obtain the correlation coefficients Ruu, Rvv . All the instantaneous flow fields which
have a correlation coefficient greater than 0.8 are selected for further processing. The
result based on this method of processing is shown in figure 7 for a given phase for
St =0.06. The figure shows the centreline velocity variation at a given phase. The
velocity variation before the procedure is applied is shown by the solid line and the
variation after it is applied is shown by the dotted line. It is seen that the maximum
variation between the two cases due to jitter is about 2.8 % around x/d =5. These
velocity fields selected after the procedure is applied are considered to be good data
samples for further analysis. Reynolds stresses here are associated with both the
vortex location variations and the random fluctuations in velocity. These spatially
resolved stresses at different phases are used in the following discussion.

In all the experiments, the data are acquired using two cameras with an overlap of
a region covering the flow field of about 0.80 diameters. A weighted-average method
is used to combine the data in the overlapping region. At the beginning of the overlap
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region, the first zone is assigned a weight of one and the second zone is assigned a
weight of zero. While moving towards the end of the overlap region, the weight of the
first zone decreases linearly to zero whereas the weight of the second zone is increased
linearly to one. The advantage of this technique is that it minimizes the mismatch of
data at the edges of the combining zones (Alkislar 2001).

To validate this idea, PIV data from two different runs are compared in figure 8.
The data of phase-averaged velocity and vorticity contour lines taken during two
separate runs are compared at a phase angle of 336◦. Since the data are obtained
simultaneously from two cameras, it is imperative that they be accurately combined
to show the complete flow field in the axial direction. It is seen from the figure that
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Figure 9. Phase-averaged exit velocity variation with time for different Strouhal numbers.

between x/d = 5 and 6, where the overlap of the two images occurs, there is a smooth
transition of the contour lines for both the mean velocity and vorticy. For example,
the normalized vorticity contours representing a level of 0.8 s−1 (figure 8b) for the
two cases overlap reasonably well.

The uncertainty in the velocity measurements due to error in the particle
displacement evaluation can be conservatively estimated to be 0.025 pixels (Lourenco
& Krothapalli 2000). The accuracy of the mean and turbulent velocity field also
depends on the number of samples acquired. In the present experiments, a typical
acquisition consists of 100 vector fields for the phase-averaged flow field. Since the
full cycle of the pulse is sampled over 30 to 60 phases with equal intervals, the global
mean has 3000–6000 vector fields. This results in an uncertainty of about 1 % and
10 % in phased-averaged velocity and random turbulence measurements, respectively.
In all the experiments, the time delay was chosen to give displacement not less than 5
pixels resulting in an error of 0.6 %. To further validate PIV measurements, a standard
single hot wire set-up (DISA Type 55M10) was used to measure mean and turbulence
profiles at selected downstream locations of a steady jet operating at an exit velocity
of 105 m s−1. We found very good agreement between the two sets of data (Choutapalli
2006). The velocity data derived from the unsteady pressure measurement, obtained
using a Kulite probe (figure 4), were found to agree well with the PIV data (Alkislar
et al. 2005): a further evidence of the success of the measurement technique. In these
comparisons, the deviation of the Kulite probe measurements from PIV measurements
is less than 2.0 %.

2.3. Jet initial conditions

The initial pulse characteristics play an important role in determining the jet structure.
The velocity variation with time at the centre of the nozzle exit is used to characterize
the pulse shape as shown in figure 9. Included in the figure are the data for the three
different Strouhal numbers. The instant of time when the nozzle exit velocity reaches
a minimum value at the centre is denoted as t =0 for all the discussion. The spacing
between the data points reflects the phase interval where the data were taken.

The measured values of important parameters that are characteristic of the initial
pulse are given in table 1. Because of the manner in which the facility is built, it
was difficult to achieve higher Strouhal numbers while maintaining a reasonable high
mean velocity. The total pressure at the nozzle exit P0 was maintained constant
in all the experiments. However, the variation in the mean exit velocities shown
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St(=f d/Uj ) P0/Pa Uj (m s−1)
ũc,rms

Uj

〈uc〉max − 〈uc〉min

Uj

〈uc〉max

Uj

L/d
Mexit

Mmass avg

Eexit

Emass avg

0.03 1.1 88.1 0.41 1.12 1.44 29.4 1.08 1.29
0.06 1.1 92.3 0.42 1.02 1.40 16.7 1.11 1.36
0.11 1.1 100.5 0.42 1.00 1.47 9.4 1.15 1.40

Table 1. Operating conditions and parameters.

in table 1 is due to the variation in the nozzle exit static pressure at different
pulsing frequencies. For the three Strouhal numbers considered in the paper, the
resulting fluctuation magnitudes and the maximum velocity within a period remain
relatively constant. The slug length to nozzle diameter (L/D) ratio (L = tUe/d (where
Ue = 4/(πd2τ )

∫ ∫ τ

0
udt dA at the nozzle exit plane) varies from 9.4 to 29.4. Since

these values are much greater than the characteristic stroke ratio of 4.0 (ratio that
differentiates between a single vortex ring and the vortex ring with a trailing jet)
observed by Gharib, Rambod & Shariff (1998), it is expected that the dynamics of the
pulsed jets in our study, which are close to realistic operating conditions of pulsejet
engines, would be different from those available in the literature thus far.

The variation of time-averaged momentum flux Mexit = (1/τ )
∫ ∫ τ

0
ρu2dt dA and

energy flux Eexit =(1/τ )
∫ ∫ τ

0
ρu3/2 dt dA at the nozzle exit with St is given in table

1. In a steady jet, these ratios assume a value of unity. However, in an unsteady jet,
the magnitudes of the two ratios depend on the nature of the temporal variation of
the exit velocity. The energy flux represents the extra work necessary to be expended
in producing a pulsed jet as compared to a steady jet with the same mass flow rate.
In an unsteady jet, the momentum and energy will have contributions due to the
overpressure in addition to the momentum and energy flux terms Mexit and Eexit , a
discussion of which is deferred to § 3.

The global mean and phase-averaged mean velocity profiles at the nozzle exit are
examined using the data at x/d =0.1. This downstream location is selected to avoid
any contamination to the data due laser light reflections from the nozzle exit. The
velocity profiles shown in figure 10 are representative of the background jet flow
preceding the formation of the vortex. The top-hat velocity profiles with turbulent
shear layer are observed as shown in figure 10. With increasing Strouhal numbers,
the magnitude of phase-averaged axial velocity of the background jet increases as
shown in figure 10(b). These observations indicate that the initial pulsed jet flow being
studied here is a turbulent pulsed jet with sufficiently large pulsation magnitude that is
representative of a realistic pulse jet engine exhaust (Choutapalli 2006). Furthermore,
figure 11(a) shows the three-dimensional axial mean velocity for St =0.06 at the
nozzle exit. The velocity profiles taken on two perpendicular diametric planes are
shown in figure 11(b). It can be seen from the figure that the flow field at the nozzle
exit is symmetric. In all the experiments, the Reynolds number of the jet, based on
the nozzle mean centreline exit velocity and the exit diameter, is about 3.4 × 105. The
stagnation temperature of the jet was kept constant at 313 K.

3. Results and discussion
3.1. Overall structure of the pulsed jet

The modulation of the exit velocity in time generally results in a series of vortex
rings, produced once per cycle, riding over a background flow (figure 12). A vortex
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ring begins to form at the instant the velocity at the exit begins to increase. As in
the formation of a conventional vortex ring, the ring grows in size, its circulation
increases, convects downstream and at some later time detaches from the trailing jet,
commonly referred to as pinch-off (Gharib et al. 1998). In the present experiments,
the convection velocity of the ring is approximately 0.6Uj .
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Figure 12. Phase-locked flow visualization images of a pulsed jet at St = 0.06.

There are some crucial differences between an isolated vortex ring and the ring in
a pulsed jet. How the rings and the background jet evolve individually and through
mutual interaction dictates the downstream evolution and the properties of a pulsed
jet. In the present experiments, with the Reynolds number being high enough that
the rings and jets are turbulent and the variation in 〈uc〉max − 〈uc〉min/(Uj ) being small
for the different cases, the governing parameter is T ∗ or St .

Figure 13 shows contour plots of the phase-averaged axial velocity and azimuthal
vorticity for different St numbers studied. At each St, five phases are included starting
with t/τ = 0.2. The axial velocity and vorticity contours are shown in the bottom and
top half of each plot, respectively. Also shown in each plot is the variation of the
axial centreline velocity 〈uc〉. The exit velocity at each phase may be obtained from
axial centreline velocity curve. These figures give the salient features in the near field
(x/d < 10) of the pulsed jet as the St is varied.

We discuss the high T ∗ =29, 16.7 (i.e. low St = 0.03, 0.06) cases first. Data at these
conditions suggest that the rings are produced at a low frequency and are spaced
apart. The initial spacing between adjacent vortices Δxring is approximately 0.6T ∗d .
But for the presence of the background flow, the rings would be similar to individual
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Figure 13. For legend see facing page.

vortex rings without interaction. Considering the T ∗ = 29 case, we observe that as
the exit velocity begins to increase at time t = 0, the shear layer starts to roll up
(see t/τ = 0.2) and by t/τ =0.4, the vortex ring is completely formed and pinched
at roughly 4d from the exit. There is substantial decay in the strength, as measured
by the peak vorticity of the ring as it convects downstream; at t/τ = 0.8, the ring is
about 10d from the nozzle exit, and at t/τ = 1 the ring has moved out of the camera
range. Some of the vortex ring properties are discussed in § 3.2.

As mentioned above, this vortex ring is different in some respects from an isolated
ring. The fluid that exits the tube and eventually forms the ring is seeing fluid upstream
in the ambient having a finite axial velocity; for convenience, we term this fluid ahead
of the ring as the background jet. Similarly, the fluid behind the ring, i.e. the trailing
jet, has a finite velocity. The background jet has a velocity small compared to the
axial velocity in the ring and corresponds to fluid coming out of the nozzle when
the exit velocity is around the minimum in the cycle. On the other hand, the trailing
jet axial velocity is similar in value, and sometimes higher than the axial velocity in
the ring. Note that the ring is composed of fluid corresponding to phases when the
exit velocity is increasing in time, and the trailing jet to that when the exit velocity
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Figure 13. Evolution of a pulsed jet; (a) St = 0.03, (b) St = 0.06, Top: phase-averaged
out-of-plane component of the vorticity; bottom: phase-averaged axial velocity. The solid
line is the centreline velocity profile at each phase, (c) St =0.11.

is around the maximum. In the above discussion, axial velocity refers to that on the
centreline. These observations are made clear by examining the plots of the centreline
velocity versus x/d in figure 13(a). The variation in front of the ring is typical of
that found in an isolated ring (e.g. t/τ = 0.4), except the velocity decays down to the
background jet velocity value instead of to zero. For t/τ = 0.4 and 0.6, the velocity
magnitude in the trailing jet is about the same as that corresponding to the ring,
but at t/τ = 0.8 the trailing jet velocity is higher. The demarcation of the flow other
than the ring into background jet and trailing jet is more a matter of definition and
convenience. One can argue that the background jet is nothing but the end of the
trailing jet of the preceding vortex ring.

The flow evolution for T ∗ = 16.7 (St =0.06), as shown in figure 13(b), is similar
to that for T ∗ = 29. Because of the reduced time period, the ring from the previous
cycle just leaves the frame at x/d = 10 as the new one forms (t/τ = 0.2). As the
frequency increases the distance between adjacent rings reduces. For example, for
T ∗ = 9.4 (St = 0.11) (figure 13c), the ring from the previous cycle is about 6d from
the exit when the new one has begun to form. For this case, the rings are perhaps
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Figure 14. Temporal variation of the phase-averaged centreline axial velocity at different
axial distances for St = 0.06.

close enough that the trailing jet of the leading ring influences the dynamics of the
one following.

At the next higher frequency, T ∗ = 9.4 (St = 0.11) (figure 13c), two vortex rings are
seen in the frame spaced Δxring ≈ 5d . The spacing between the rings has decreased
and the rings remain clearly distinguishable only till about 7d from the nozzle exit.
At t/τ = 1.0, a weaker secondary ring seems to form in the shear layer in addition
to the primary one. The secondary ring is weaker and shorter lived. As discussed
by Krueger & Gharib (2005), this could be due to the gradual pulse termination as
shown in figure 4. It could also be caused by the shear layer becoming unstable at
the ‘preferred’ mode of the jet (Crow & Champagne 1971) corresponding to the first
harmonic of the forcing frequency.

In all the cases, a vortex ring begins to form when the exit velocity starts to increase
in time. The strong spatial decline of axial velocity is just ahead of the ring with
a maximum in uc usually being coincident with the core. Another common feature
associated with the ring, till it is strong enough, is the existence of negative u regions
(shown in blue colour contours in the bottom half of the figure).

A feature of the initial evolution of a pulsed jet is brought out by plotting the
variation in time of the axial centreline velocity at a fixed location. This is the velocity
that would be recorded by, for example, a fixed hot-wire probe. Figure 14 shows such
plots at x/d = 0, 2, 4, 6, 8 and 10 for the St = 0.06 jet. The variation in time of the exit
velocity (x/d = 0) develops a sharp gradient as reflected in the profiles at x/d =2 and
x/d = 4. This steepening is associated with the ring formation and looks similar to
that observed during shock formation in unsteady compressible flows. The similarity
is limited to the fact that in both cases nonlinear processes lead to the steepening.
In most of the experiments, incompressible vortex rings have been produced with
an impulsive or near-impulsive motion of a piston (Shariff & Leonard 1992). In
experiments where an open-ended shock tube is used to produce a ring (Arakeri et al.
2004), the exit velocity variation in time has an initial very sharp increase from zero
as the shock exits the tube, followed by a slower increase as expansion waves enter
the tube and the high-pressure fluid behind the shock accelerates.
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Figure 15. Temporal variation of the ring position in the axial direction for different St .

The peak in the velocity (e.g. at t/τ = 0.6, x/d = 4) is associated with the presence
of the ring. The velocity before this time corresponds to the background jet, and the
high velocity after the ring corresponds to the trailing jet. When the ring is strong,
there is a local minimum in the velocity demarcating the ring and trailing jet. Clearly,
at a fixed time, a similar signature of velocity with x is seen (figure 13a–c), except
that increasing time should be viewed as decreasing x.

The quantitative description of the spatio-temporal features of the pulsed jet
described above is given in the following sections. This description includes evolution
of the vortex ring, the background and trailing jets and their interactions. Given the
high Reynolds numbers jet flows considered in these experiments, both the periodic
and random components of the turbulent stresses play an important role in the flow
evolution.

3.2. Flow evolution

Figure 15 shows the variation of the ring position with non-dimensional time for
the different St; the ring position xv at a particular time is derived from the phase-
averaged vorticity plots of the type shown in figure 13. For each St, a straight line has
been fitted through the data; inverse slope of the line gives the average convection
velocity or celerity of the ring. Ring position data are available till x/d = 11, the
extent to which PIV images were recorded. The data of Schuster & Smith (2007) are
also shown for comparison in the figure. A higher frequency leads to more frequently
produced and spatially closely spaced rings. Closer spacing of the rings also results
in their earlier demise. When the data in figure 15 are plotted using a different
non-dimensionalization for the time, there appears to be a collapse of the data for
St > 0.06 as shown in figure 16. The data for 0.03 are slightly offset with the slope
being the same as that of the other data. The linear variation indicates a vortex ring
convection velocity Uring ≈ 0.6Uj , which is independent of the forcing frequency at
least for the limited range considered here. There seems to be slight increase in ring
convection velocity with decreasing L/D as suggested by the synthetic jet data of
Schuster & Smith (2007) and the data of Choutapalli (2006) at St = 0.24 and 0.42.

The phase-averaged ring circulation variation with downstream distance is shown
in figure 17. The maximum circulation for the St =0.03 and 0.06 cases is about
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Figure 17. Variation of vortex ring circulation with downstream distance.

the same (∼2Ujd) and slightly less (∼1.7Ujd) for St = 0.11, though the distance at
which the maximum is achieved decreases with increasing St. Similar values for the
normalized ring circulation were also observed by Rosenfeld, Rambod & Gharib
(1998) and Mohseni, Ran & Colonius (2001) for single pulses. In the three cases
under consideration, we observe a build-up of circulation, and when the ring cannot
accommodate any more vorticity it pinches off from the trailing jet. As shown in
figure 18, the maxima in the peak vorticity for all the cases occur within x/d =2,
corresponding to the rolling up of the shear layer from the nozzle wall.

The decay with distance of the rings is accompanied by a reduction in the
modulation of, for example, the phase-averaged centreline velocity as seen in
figure 14. Figure 19 shows for the three Strouhal numbers the variations of the
r.m.s. of the fluctuation in the periodic component of centreline axial velocity. The√

ũ2/Uj can be considered to be a measure of the unsteadiness of the jet, and its
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decay indicates the transition from a pulsed to a steady jet. The reduction in the peak
vorticity seen in figure 18 is mostly due to turbulent diffusion. Since we are looking
at phase averages, ‘jitter’ in the data may also be contributing to this reduction.
When compared to the peak vorticity decay, the ring circulation decays rather slowly
(figure 17). The decay in circulation is due to its loss to the trailing jet and, when the
vortex core becomes large enough, through diffusion of vorticity in the flow field.

3.3. Different regions of the jet

At low enough frequencies, the rings are sufficiently spaced apart and we can usefully
divide the flow into three components composed of the ring, trailing jet behind the
ring and background jet ahead of the ring corresponding roughly to the region of
low axial velocity. In the limited (x/d < 11) range of data we have, it is useful to
investigate how these three components of the jet evolve. For the following discussion,
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we consider the St = 0.06 jet in detail. We choose the location 3d behind the ring
to represent the trailing jet, and the point of minimum axial centreline velocity at a
given phase to represent the background jet.

Figure 20 shows the variations of the half-width with x/d for each of the three
components of the jet. For comparison, the variation of the global mean half-width
and that of the steady jet is included. The steady jet data referred to in this paper
are also obtained from the present experimental set-up. The ring half-width, which
happens to coincide with the vortex core distance from the centreline, shows a rapid
increase for x < 0.5d , a region of vortex ring formation, and thereafter the increase
is gradual. The half-widths corresponding to the trailing and background jets show
initial slow growth, similar to that for a steady jet, and then increase relatively rapidly
overtaking the ring half-width.

The centreline axial velocity variations for the three components of the pulsed jet,
shown in figure 21, are quite different from each other. However, the global mean of
the centreline velocity of the St = 0.06 jet and that of the steady jet shows similar
variations. Till about x/d = 4, the centreline velocities corresponding to the ring and
trailing jet are of similar magnitude. At about x/d = 8, the trailing jet velocity rapidly
drops to nearly the background jet value, which, interestingly, is almost constant with
distance.

The phase-averaged axial velocity profiles with r/d for different components of
the jet at various downstream locations are shown in figure 22. In the initial few
diameters, the profiles corresponding to the ring show the negative velocities in the
outer parts of the ring; with increasing x/d in the central region, the profiles change
from top hat to rounded. In the trailing jet, the profiles of axial velocity show some
features that would be found in a steady jet: the initial region (x/d � 4) with distinct
shear layers and profiles having a flat central portion, indicating a ‘potential core’,
followed by Gaussian type profiles after merger of the shear layers. However, as seen
in figure 21, the centreline velocity decays much more rapidly than in a steady jet.
In contrast, for the background jet as noted above, the centreline velocity in fact
slightly increases with x/d (figure 21). The background jet is taken to be the fluid
ahead of the vortex ring and behind the trailing jet of the preceding pulse. The small
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0.06; top: background jet; middle: vortex ring and bottom: trailing jet.

increase in velocity of the background jet in the figure is due to the slowing down
of the trailing jet of the preceding pulse. As a result, the background jet region is
‘contaminated’ with the fluid of the new vortex ring and the preceding pulse’s trailing
jet. Hence, there is a slight increase in the velocity of the background jet. As seen in
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the figure, the profiles even at small x/d do not have flat regions and look distinctly
non-Gaussian for x/d > 4.

Figure 23 shows the contour plots for the St = 0.06 jet of the phase-averaged
random turbulent velocity components

√
〈u′′2〉/Uj ,

√
〈v′′2〉/Uj and 〈u′′v′′〉/U 2

j . The

peaks in the axial component
√

〈u′′2〉/Uj are near the nose and vortex cores of the
ring and in the shear layers of the trailing jet. Maximum values of the radial random
component

√
〈v′′2〉/Uj are found in the vortex cores and in the shear layers of the

trailing jet (Glezer & Coles 1990). In the trailing jet region, the maximum Reynolds
shear stress 〈u′′v′′〉/U 2

j regions almost coincide with the maximum vorticity regions
(compare figure 23c and figure 13b). For the vortex ring, till about x = 4d , regions of
both positive and negative Reynolds shear stress can be seen at the ring core. As the
ring develops, maximum shear stress occurs around the core on the outside regions
of the ring. The contour plots of the periodic stress components ũũ/U 2

j , ṽṽ/U 2
j and

ũṽ/U 2
j , not included here, show large values as compared to those of the random

components (Choutapalli 2006).
Profiles of the phase-averaged axial (figure 24a) and radial (figure 24b) components

and phase-averaged Reynolds shear stress (figure 24c) of the random fluctuations
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during a cycle for St = 0.06; (a) axial component, (b) radial component, (c) Reynolds shear
stress of random fluctuations.

at different x/d in the three regions of the pulsed jet reveal information that is not
obvious in the contour plots. In the ring, once it is formed, profiles of both the axial
and radial fluctuations show maxima near the cores. The levels of the two turbulent
fluctuations and the Reynolds shear stress are highest in the ring at all x/d. For all
the three quantities and for x/d < 5, double peaks associated with the shear layers
are seen in the trailing jet and to a lesser extent in the background jet. The shear
stresses in the background jet are particularly small (figure 24c) as compared to the
corresponding turbulent fluctuations of the vortex ring and the trailing jet (figures 24a
and 24b). In spite of fluctuation levels being different in trailing and background jets,

it is observed that the correlation coefficient u′′v′′/
√

u′′2
√

v′′2 assumes a value between
0.5 and 0.6 for both, a value close to that in a steady jet.

Production of the random component of the turbulent kinetic energy is given by

〈u′′u′′〉 ∂〈u〉
∂x

+ 〈u′′v′′〉( ∂〈u〉
∂r

+ ∂〈v〉
∂x

) + 〈v′′v′′〉 ∂〈v〉
∂r

, which has three components: The second
term is the familiar work done by the Reynolds shear stress on the mean (phase-
averaged) velocity gradient, which is the dominant term in shear layers. The other
two terms, which are not important in thin shear flows such as boundary layers and



48 I. Choutapalli, A. Krothapalli and J. H. Arakeri

r/
d

0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3 0 0.1 0.2 0.3

0 0.1 0.2 0.30 0.1 0.2 0.30 0.1 0.2 0.30 0.1 0.2 0.30 0.1 0.2 0.3

0 0.1 0.2 0.30 0.1 0.2 0.30 0.1 0.2 0.30 0.1 0.2 0.30 0.1 0.2 0.3

–2

–1

0

1

2
(a)

(b)

r/
d

–2

–1

0

1

2

r/
d

–2

–1

0

1

2

r/
d

–2

–1

0

1

2

r/
d

–2

–1

0

1

2

r/
d

–2

–1

0

1

2

x/d = 2.0
t/τ = 0.18

x/d = 0.5
t/τ = 0.05

x/d = 0.5
t/τ = 0.22

x/d = 0.5
t/τ = 0.5

x/d = 2.0
t/τ = 0.62

x/d = 4.0
t/τ = 0.8

x/d = 6.0
t/τ = 0.08

x/d = 0.5
t/τ = 0.22

x/d = 2.0
t/τ = 0.38

x/d = 4.2
t/τ = 0.55

x/d = 6.0
t/τ = 0.72

x/d = 8.1
t/τ = 0.93

x/d = 0.5
t/τ = 0.05

x/d = 2.0
t/τ = 0.18

x/d = 4.0
t/τ = 0.32

x/d = 6.0
t/τ = 0.43

x/d = 8.0
t/τ = 0.48

x/d = 0.5
t/τ = 0.5

x/d = 2.0
t/τ = 0.62

x/d = 4.0
t/τ = 0.08

x/d = 6.0
t/τ = 0.08

x/d = 8.2
t/τ = 0.25

x/d = 8.2
t/τ = 0.25

x/d = 2.0
t/τ = 0.38

x/d = 4.2
t/τ = 0.55

x/d = 6.0
t/τ = 0.72

x/d = 8.1
t/τ = 0.93

x/d = 4.0
t/τ = 0.32

x/d = 6.0
t/τ = 0.43

x/d = 8.0
t/τ = 0.48 B

ack
g
ro

u
n
d
 jet

T
railin

g
 jet

V
o
rtex

 rin
g

B
ack

g
ro

u
n
d
 jet

V
o
rtex

 rin
g

T
railin

g
 jet

√�u′′2�/Uj √�u′′2�/Uj √�u′′2�/Uj √�u′′2�/Uj √�u′′2�/Uj

0 0.1 0.2 0.30 0.1 0.2 0.30 0.1 0.2 0.30 0.1 0.2 0.3

0

0 0.1 0.2 0.3

0 0.1 0.2 0.30 0.1 0.2 0.30 0.1 0.2 0.30 0.1 0.2 0.30.1 0.2 0.3

0 0.1 0.2 0.30 0.1 0.2 0.30 0.1 0.2 0.30 0.1 0.2 0.30 0.1 0.2 0.3

√�u′′2�/Uj √�u′′2�/Uj √�u′′2�/Uj √�u′′2�/Uj √�u′′2�/Uj

Figure 24. For legend see facing page.



An experimental study of a turbulent pulsed air jet 49

r/
d

–0.02 0 0.02 –0.02 0 0.02 –0.02 0 0.02 –0.02 0 0.02 –0.02 0 0.02

–0.02 0 0.02–0.02 0 0.02–0.02 0 0.02 –0.02 0 0.02 –0.02 0 0.02

–0.02 0 0.02–0.02 0 0.02–0.02 0 0.02 –0.02 0 0.02 –0.02 0 0.02

–2

–1

0

1

2
(c)

r/
d

–1

0

1

2

r/
d

–2

–1

0

1

2

x/d = 0.5
t/τ = 0.05

x/d = 2.0
t/τ = 0.18

x/d = 4.0
t/τ = 0.32

x/d = 6.0
t/τ = 0.43

x/d = 8.0
t/τ = 0.48

x/d = 8.1
t/τ = 0.93

x/d = 6.0
t/τ = 0.72

x/d = 4.2
t/τ = 0.55

x/d = 2.0
t/τ = 0.38

x/d = 0.5
t/τ = 0.22

x/d = 0.5
t/τ = 0.5

x/d = 2.0
t/τ = 0.62 x/d = 4.0

t/τ = 0.8

x/d = 6.0
t/τ = 0.08

x/d = 8.2
t/τ = 0.25

B
ack

g
ro

u
n
d
 jet

�u′′v′′�/Uj
2 �u′′v′′�/Uj

2 �u′′v′′�/Uj
2 �u′′v′′�/Uj

2 �u′′v′′�/Uj
2

T
railin

g
 jet

V
o
rtex

 rin
g

Figure 24. Profiles of phase-averaged random turbulence quantities for the three components
of the jet at different downstream locations for St = 0.06; (a) axial component, (b) radial
component, (c) Reynolds shear stress of random fluctuations.

jets, are the products of the normal turbulent stresses and the corresponding normal
velocity gradients. The uncertainty in the parameter (T KE/U 2

j ) is ±5 × 10−5 in the
present experiments.

Figure 25 shows contour plots of the total production at different phases within
a cycle. These contour plots look remarkably similar to those of random turbulent
fluctuations shown in figure 23; regions of high turbulence production and regions
of large turbulent fluctuations nearly coincide. There are two regions of dominant
turbulence production, one associated with the ring and the other with the trailing jet
shear layers. High turbulence production near the nose of the ring is mainly due to
term 1 as shown in figure 26(a). Note that the axial velocity gradient and turbulence
levels are high near the nose of the ring (figures 13b and 23). Production due to shear
as represented by the term 2 is mainly responsible for the high turbulence levels in the
shear layers and on the edges of the ring (figure 26b). Regions of negative production
(Glezer & Coles 1990) are also seen near the vortex ring cores, especially for x/d < 5,
when the ring displays distinct cores. Contours of the term 3 shown in figure 26(c)
suggest that the production is dominant only near the vortex cores. It is important to
note that some of the random turbulence may be due to the phase jitter, which also
may contribute to turbulence production. The uncertainty due to jitter is less than
2.8 % in the phase-averaged mean velocity, while the uncertainty in the normalized
TKE production which is proportional to the cube of velocity standard deviation
(Goodman 1960) is ±3 × 10−4.
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different phases corresponding to figure 23.

3.4. Global characteristics

In this section, we look at several globally averaged mean properties, such as spread
rate, entrainment, profiles of mean and fluctuating velocities, of the pulsed jet. What
is of interest is how St or T ∗ affect these properties and how they compare with the
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Figure 26. For legend see next page.

properties of a steady turbulent jet. As we shall see, many of the observed features are
explained by dynamics that we discussed above. In all the figures, data corresponding
to the steady jet are shown as a solid line. The effective origin of the steady jet
obtained by linear extrapolation of the shear layer width is −0.25d.

Figures 27 and 28 respectively show the variations of the centreline axial velocity
and the jet half-width with x/d for the pulsed jet and the steady jet. As seen in
figure 27, the rate of centreline velocity decay increases with increase in Strouhal
number. Correspondingly, the jet spreading rate also increases with Strouhal number
as seen in figure 28. There is a sudden increase in the spread rate at some x/d, the
value of which increases with reducing frequency. For example, the rapid increase for
the St = 0.11 jet is noticed at x/d ≈ 4.5, and for the St = 0.03 jet, it is at x/d ≈ 6.5.
This increase in spread rate is related to more mixing and entrainment which, in
turn, depends on the distance between adjacent vortex rings and their strengths.
A similar trend was also observed by Krueger & Gharib (2005). Remarkably, the
lowest frequency jet, St = 0.03, shows characteristics similar to the steady jet as far as
centreline velocity decay and spread rates are concerned.

With increase in frequency, the increased centreline velocity decay and increased
spreading discussed above are also depicted qualitatively in mean axial velocity
contours shown in figure 29, for the steady and St =0.06 jets. It is to be remembered
that the global average picture of a pulsed jet is the sum of the contributions from
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Figure 27. Global mean centreline velocity variation with downstream distance.

the ring, trailing jet and background jet. Consistent with the centreline velocity decay,
the extent of the ‘potential core’ region of the pulsed jet decreases with increasing
pulse frequency.
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Figure 30 shows the normalized mass flow rates versus x/d for the pulsed jets and

the steady jet. The mass flow rate is calculated as
.
m = 2πρ

∫ R0

0
u(r)r dr, where R0 is

taken as the distance from the centreline of the jet to the top and bottom boundaries
of the flow field under consideration. In these calculations, the total mass flow rate
which includes the jet mass flow rate and the entrained mass flow rate at any given
location is calculated for the cases under consideration. Beyond a certain x/d, the
value depending on St, the entrainment rate of a pulsed jet is constant and same as
that of a steady jet. It is important to note that due to the limited view of the PIV
images in the radial direction, especially for the St =0.11 case, the mass flow rate data
for x/d > 7 may be underestimated. At x/d =10, for St =0.11 the mass flow rate is
nearly twice the steady jet value. The variation of mass flow rate at x/d = 10, along
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with other Strouhal numbers considered in Choutapalli (2006), is shown in figure 31.
Also included in the figure are the data taken from Vermeulen et al. (1986) where the
r.m.s. values of pulsation amplitudes are nearly equal to those in the current study. It
is apparent from these figures that a pulsed jet has a higher entrainment compared
to a steady jet, with the maximum obtained at St =0.24.

It is well known that entrainment is enhanced by perturbing a jet, which is tied
in with formation of large structures (vortex rings) resulting from the perturbation
(Crow & Champagne 1971; Hussain 1983). The enhanced entrainment is most likely
due to the distinct vortex rings found in a pulsed jet. Most of the entrainment in a
ring happens during the formation process (Dabiri & Gharib 2004), and the amount
of entrainment depends in some way on the circulation and size of the ring. At the
lowest frequency (St =0.03), though the entrainment per ring is high, the rings are
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spaced so far apart that the overall entrainment is only marginally more than the
steady jet value. With increasing frequency, it has been observed by Choutapalli (2006)
that the rings become more closely packed, and as seen in figure 31 the entrainment
increases up to St of about 0.24. The drop in entrainment after this value of St is
because the rings were observed to be too close to each other (Choutapalli 2006)
and the circulation per ring also decreased (figure 17). At the higher frequency, rings
die sooner and along with them their entrainment capacity. It suggests that the
entrainment is dependant on the strength and spacing of the vortex rings in a given
flow field. The optimum combination of spacing and strength seems to be obtained
at St = 0.24.

One main application of pulsed jets is in propulsion, that is, for producing thrust
(e.g. pulse detonation engines and aquatic propulsion). As discussed in § 2.2, for a
given exit mass flux, both momentum flux and energy flux at the exit are higher for
a pulsed jet than for a steady jet. The axial momentum flux M(x) is calculated, as
outlined by Bremhorst & Harch (1979), by considering the following equation across
the jet cross-section:

∂

∂x

∫ R0.01

0

1

τ

∫ τ

0

(〈u〉2 + u′2 + v′2) dt (r dr) − 2
∂

∂x

∫ R0.01

0

1

τ

∫ τ

0

(v′2) dt (r dr) = − R2
0.01

2ρ

∂P∞

∂x
.

(3.1)

Here, R0.01 is the radial location where the mean axial velocity is 1 % of that on the
jet axis, u′ and v′ are the total fluctuating components as defined in § 2.2, P∞ is the
static pressure at the edge of the jet relative to the far field ambient pressure and ρ is
the fluid density. The momentum flux is calculated by considering both terms on the
left-hand side of (3.1) and is normalized with the exit value. The velocity fluctuations
due to both the axial and radial components are taken into consideration since the
pulsed jet flow field is dominated by coherent vortical structures in the initial few
diameters. Figure 32(b) and (c) shows that the normal stress contribution due to
both the axial and radial component of velocities at St = 0.06 is significant up to
around 5d .
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Figure 32(a) shows the variation of the normalized momentum flux with
downstream distance. It is seen that constancy of momentum is achieved around
7d , 5d and 2d for St = 0.03, 0.06 and 0.11, respectively. A similar trend was also
observed in the study of Bremhorst & Harch (1979). The results show that momentum
constancy begins at nearly the same location where the vortex rings start to diffuse
(see figure 17). Once the vortex rings begin to diffuse, the jet development is quite
similar to that of a steady jet. In a steady jet, there is an increase of about 10 % in
the momentum flux, which is attributed to the negative mean static pressure in the
turbulent regions of the jet (Miller & Comings 1957; Hussain & Clark 1977). For the
pulsed jet, there is a further increase of about 40 % for St = 0.03 over the steady jet.
Law of conservation of momentum applied to a control volume starting at the exit
and ending at a sufficiently downstream (say x/d = 10) station, where the pressure
is nearly ambient, will show that the only way momentum flux can increase with
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Figure 32. (a) Normalized momentum flux variation with downstream distance, (b) Contours
of global mean axial normal stresses, (c) contours of global mean radial normal stresses for
St = 0.06.

distance downstream is if the pressure at the exit exceeds the ambient value at least
at some time during the cycle. The existence of this overpressure has been discussed
by Krueger (2005) and is caused by an added mass effect of the jet fluid having to
push and provide momentum to the stationary, or as in our case the slower moving
background jet, fluid in front. The overpressure will occur only when the exit velocity
is increasing with time, and should be roughly proportional to the time derivative of
the exit velocity.

The global mean axial velocity profiles at selected locations downstream of the
nozzle exit are shown in figure 33 for all the cases studied. Also included here are
the data for a steady jet. It is to be remembered that the global average picture of a
pulsed jet is the sum of the contributions from the ring, trailing jet and background
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Figure 33. Global mean axial velocity profiles at three different downstream locations.

jet. The nearly top-hat profile at the nozzle exit transforms into a typical Gaussian
profile at x/d = 10 with its shape being similar for pulsed and steady jets. The rapid
spreading of the pulsed jet manifests itself into wider profiles with the peak velocity
magnitudes being lowest for the St = 0.06 and St = 0.11 cases.

The variation of the centreline axial and radial turbulence (random component)
intensity is shown in figure 34 for pulsed and steady jets. The steady jet turbulence
intensity reaches a peak value of about 0.13 at x/d =7.5. The St = 0.11 jet has
the highest fluctuation levels, and the St =0.03 and 0.06 jets reach nearly the same
fluctuation levels as the 0.11 case around x/d = 10, indicating that characteristic of
the jets is approaching that of a steady jet. The r.m.s. profiles of the axial velocity at
selected downstream locations are shown in figure 35. The profile shapes are similar
to that of the steady jet.

3.5. Vortex ring characteristics

As discussed in § 3.1, the main difference between the vortex rings produced in
the present pulsed jets and the conventional ring is that in the pulsed jet case,
the ring formation is in the presence of a background jet flow having a non-zero
axial velocity and non-zero turbulence levels. It is interesting in these circumstances
to look at the ring characteristics, such as the circulation development with time
and the formation number (Gharib et al. 1998). The vortex ring is identified using
the λ2 criterion proposed by Jeong & Hussain (1995). To verify the value of ring
circulation obtained by this method, the ring contour was also identified from the
PIV data using the lowest detectable contour of 1 s−1 (Gharib et al. 1998). From
both the methods, the maximum variation of the magnitudes of normalized ring
circulation from each other was within 2 %. Hence, there was no significant difference
in the ring circulation determined by the two methods. Normalized ring circulation
is plotted against normalized slug length L in figure 36 for the St = 0.06 jet; Ue

multiplied by time gives the ‘length’ of fluid that has issued out of the nozzle from
t = 0.

The circulation increases during the ring formation, reaches a maximum at around
the time ring separates from the trailing jet and then starts decaying. Figure 36 also
shows the vorticity contour plots at selected times to bring out the correspondence
between circulation and state of the ring. Figure 37 shows the ring circulation and
the total (ring + trailing jet) circulation versus slug length. Extrapolating back from
the maximum ring circulation point to intersect the total circulation curve gives the
formation number to be about 3. This value may be compared with that obtained
in a laminar piston-driven ring of 4 (Gharib et al. 1998) and a ring that is produced
from open-ended shock tube of about 2.5 (Arakeri et al. 2004). Similarly, calculated
formation number for St = 0.03 jet is around 4.5 and for St = 0.11 jet it is 2.5
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of the jet. (a) axial velocity; (b) transverse velocity.

(Choutapalli 2006). A potential cause of the difference in the formation number
between the present experiments and those of Gharib et al. (1998) is the difference in
the temporal variation of the velocity profile at the nozzle exit.

4. Summary and conclusions
A pulsed jet in the near field is perhaps best described as a series of vortex rings

interspersed by jet-like flows. Many important global characteristics of a pulsed jet,
such as entrainment and spreading rate, are determined by two main parameters:
the spacing and strength of these vortex rings. The maximum circulation in the
ring is proportional to the fluid slug length (Lr ), which forms the ring, times an
average exit velocity UeLr . Here, Lr is equal to either L, the total slug length, or
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some Lmax , where Lmax ≈ 3 − 4d , which is determined by the maximum circulation
the ring can incorporate. In the present experiments, the circulation reached close to
the maximum possible for the three frequencies (St = 0.03, 0.06 and 0.11) and some
of the circulation is absorbed into the trailing jet. Compared to a steady jet, pulsed
jets entrain more fluid, spread faster and have higher momentum and energy fluxes.
Maximum entrainment and spread rates can be expected to be achieved when vortex
rings are as closely spaced as possible and, at the same time, have the maximum
values of circulation.

There are two reasons why a pulsed jet has a higher momentum compared to that
of a steady jet with the same mass flow rate. One reason is that any unsteadiness
or pulsing at the exit increases the momentum flux at the exit, as given in table
1; this increase depends just on the profile of the exit velocity variation with time.
The second reason for the increased momentum (figure 32) is the overpressure at the
nozzle exit caused by an added mass effect of momentum being added to the ambient
fluid when the jet fluid velocity is increasing with time (Krueger 2005). Both of these
components responsible for the increase in momentum also contribute to a higher
energy required to produce a pulsed jet.

The evolution of a low-frequency jet depends on the individual evolutions of the
three components – vortex ring, background and trailing jets – and on the interactions
among these three components. Taking the example of the St = 0.06 jet, we discussed
some properties of these three components. Various axial gradient terms, for example,
∂〈u′′u′′〉/∂x, 〈u〉∂〈u′u′〉/∂x, occurring in the axial momentum and turbulence energy
equations, and normally neglected under the boundary layer assumption, are likely
to be important in calculating the pulsed jet evolution (Bremhorst & Gehrke 2000).
It appears that vortex ring in a pulsed jet decays more rapidly than an individual
turbulent ring (Maxworthy 1974, 1977; Glezer & Coles 1990). This more rapid
decay is related to interactions with the jets upstream and downstream of the ring.
Bremhorst & Gehrke (2000) give detailed measurements of turbulence quantities in
the far field (x/d around 50) of their very low St ( = 0.0035) jet, and also comment on
the importance of extra terms due to unsteadiness and axial gradients for modelling
of the turbulence in a pulsed jet.

It is not known how far downstream vortex rings exist as distinct entities, but what
is known is that low-frequency pulsed jets show modulation in time at large x/d.
For example, for the St =0.0035 pulsed jet, a modulation in axial velocity of about
40 % of the local average centreline velocity was observed at x/d = 70 (Bremhorst
& Gehrke 2000). We can obtain an estimate of the downstream distance at which
a pulsed jet will transition to a steady one. The convection velocity of the ring, or
of the nose of the pulsed jet (in the absence of a ring), is expected to reduce with
downstream distance, say as x−n. Then Δxring ∼ τx−n will correspondingly reduce and
the rings will bunch closer together with downstream distance. At the same time, the
width of the ring (b = r1/2) will increase with distance, b ∼ xm. We may consider the
pulsed jet to become steady when the ‘rings’ are close enough Δxring = b, which gives
xtransition ∼ τ−(m+n), where xtransition is the distance at which the pulsed jet transitions
into a steady jet.
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